skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reed Bender, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cherry, J M (Ed.)
    Abstract The mechanisms that coordinate cellular gene expression are highly complex and intricately interconnected. Thus, it is necessary to move beyond a fully reductionist approach to understanding genetic information flow and begin focusing on the networked connections between genes that organize cellular function. Continued advancements in computational hardware, coupled with the development of gene correlation network algorithms, provide the capacity to study networked interactions between genes rather than their isolated functions. For example, gene coexpression networks are used to construct gene relationship networks using linear metrics such as Spearman or Pearson correlation. Recently, there have been tools designed to deepen these analyses by differentiating between intrinsic vs extrinsic noise within gene expression values, identifying different modules based on tissue phenotype, and capturing potential nonlinear relationships. In this report, we introduce an algorithm with a novel application of image-based segmentation modalities utilizing blob detection techniques applied for detecting bigenic edges in a gene expression matrix. We applied this algorithm called EdgeCrafting to a bulk RNA-sequencing gene expression matrix comprised of a healthy kidney and cancerous kidney data. We then compared EdgeCrafting against 4 other RNA expression analysis techniques: Weighted Gene Correlation Network Analysis, Knowledge Independent Network Construction, NetExtractor, and Differential gene expression analysis. 
    more » « less